Geochemistry and genesis of magnetite- apatite mineralization in Gazestan, east of Bafq


1 Department of Geology, Facaulty of Sciences, University of Isfahan, Isfahan, Iran

2 اصفهان، دانشگاه اصفهان، گروه زمین شناسی


The Gazestan iron oxide-apatite deposit, is locted 78 km east of Bafq at the Posht-e- Badam- Bafq block. Different kinds of lower Cambrian volcanic and subvolcanic rocks ranging from basic to felsic, outcrop in Gazestan area. Felsic volcanic rocks mainly are associated with orogenic phase and considered as an arc magmatism. In Gazestan deposit, host rocks display extensive alteration that can be classified into six groups including Sodic-calcic, potassic, sericitic, carbonates, silicic, chlorite ± actinolite ± epidote and tourmaline alterations. Chlorite ± actinolite ± epidote alteration is well developed throughout the Gazestan deposit.The ore body is mainly magnetite-apatite with less sulfides (Pyrite-Chalcopyrite) and REE minerals (allanite-monazite) which occur as breccia, banded, massive, stockwork and vein in altered volcanic rocks. Three generations of apatite are recognized which the second generation is usually enriched in REE minerals (monazite). The homogenization temperature of apatite (III) was calculated between 130-200 °C. The REE pattern of apatites show strong LREE enrichment with negative Eu and HREE anomaly. Magmatic fluids with high amounts of P, Fe and REE are responsible for the ore formation at the first stages. At the final stage of mineralization, meteoric (marine) waters mixed with the magmatic fluids, causing decrease in temperature and precipitation of late apatite and gangue minerals (calcite and quartz). The Gazestan deposit share many similarities with the Kiruna-type deposits (one of the subgroup of IOCG deposits).